If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2+19d-14=0
a = 3; b = 19; c = -14;
Δ = b2-4ac
Δ = 192-4·3·(-14)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-23}{2*3}=\frac{-42}{6} =-7 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+23}{2*3}=\frac{4}{6} =2/3 $
| -6=6(x-80 | | 3d2+19d–14=0 | | 6(3x-2=4x-2+4x | | 4(3x+5)=12-7x | | c=50+0.7(70) | | 204=w×6 | | 204=x-6 | | 3x-17=5x+21 | | 45=2x+10-x | | 4x+17=11-2x | | 2(s÷11)=5(s+2) | | 3/(2x+1)-2/(2x-1)-(x+3)/(4x2-1)=0 | | x+8=3x+18 | | 9(12-x)+9(12+x)/(12+x)(12-x)=2/1 | | 32^x=128 | | (12+x)(12-x)=1 | | y=(40+0.5(y-10))+50+165 | | y=(40+0.5(y-10))+50+315 | | y=(40+.05(y-10))+50+315 | | 3t+13=5t | | Y²-64x=0 | | (4y+1)÷3+(2y-1)÷2=6+(3y-7)÷5 | | y=0.5(y-10)+255 | | (Y+6)/4+(y-3)/5=5y-4 | | 1/3(x-2)=1/5(+4)+2 | | 30-6(x+3)+2x=8 | | E^2*z=-1 | | -4a-7(3a+1)=93 | | (Y+6)÷4+(y-3)÷5=5y-4 | | 9x+2=272x-4 | | 8x-3(x-1)=9x+24-3x | | P(x)=5x^2-3x+7 |